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O P T I M U M  H E A T I N G  O F  M E T A L  I N  C H A M B E R  

F U R N A C E S  W I T H  M I N I M U M  O X I D A T I O N  

V. B. Kovalevskii and Kho Zhuitian' UDC 621.1.0.18 

An algorithm is developed that makes it possible to establish regimes for heating billets in a chamber furnace 

that provide the minimum amount  of scale, and a numerical example is given. 

The issues of economic efficiency, namely, of choosing the optimum technological regimes according to 

prescribed criteria, are among the most important issues in studying the operation of heating furnaces. In solving 

the problem of optimum control of metal heating according to the minimum amount of scale, effective algorithms 

are developed to optimize the operation of continuous furnaces [1 -4  ]. In the present work we consider a similar 

problem as applied to chamber-type furnaces. The investigative procedure actually coincides with that proposed in 

[1-4]. 

Let the process of change of the temperature of the heating medium and the metal be described by the 

following equations [5, 6 ]: 

dTheat -- A 1U - A 3 - T) dT  
dt - A2Theat (Theat ' dt = ~ (Theat -- T) (1) 

with the initial conditions 

Theat (0) = Theat0, T (0) = T O (2) 

and the boundary conditions 

r (t D = T , .  (3) 

From the condition of attainability of the metal temperature Tg and the physical limitations on fuel rate 

we assume that [5, 6] 

A1 
O < To < Tk < fl , tk >_ tmin, A 3 > A 2 ,  --~2 Uh < Tk,  (4) 

[7 ]: 

O < Uh <_ U (O <_ U~, O <_ t <_ t~. (5) 

We introduce into consideration a quality criterion that determines the amount of scale at the end of heating 

tk 
a 

1 = y - ~  exp ( -  f l / T  (t)) d t .  (6) 
0 

The problem of optimum control consists in choosing the regime of variation of the fuel rate in time U(t) 

(0 -< t -< tk ) in the form of a piecewise continuous function satisfying condition (5) that minimizes functional (6) 

on solutions of (1)-(3). 
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Fig. 1. Plots of optimum heating of billets: 1) medium temperature; 2) metal 

temperature;  3) fuel rate. T, K; t, h; U, m3/h. 

Using the body of mathematics of [1, 2, 8 ] we obtain the optimum trajectory of metal heating, the optimum 

fuel rate, and the moment of switching of the controlling effect (the fuel rate). The  procedure for revealing the 

structure of the controlling function and the optimum trajectory and an algorithm for solving problem (1)-(6) are 

given in the Appendix. 

Once the time of switching t2 is found, the optimum fuel rate is written as 

U(t) = { Uh' O < - t < - t 2 '  

U k , t 2 < t < T k . 
(7) 

To solve this problem numerically, a program for a personal computer was written that made use of a 

method of dividing the segment [0, t k]  in half. 

Numerical data were chosen as follows: ff = 0.8 l / h ,  A1 = 1.3176 K / m  a, A2 --- 0.6516 l / h ;  A3 = 3.0492 l / h ;  

t k --12 h; T o -- 300 K; T k = 1500 K; Theat = 1050 K; U h = 450 m3/h; U k = 1850 m3/h; a = 2000; t5 = 3000. 

Figure 1 gives the time variations of the optimum temperature of the heating medium and the metal as well 

as the fuel rate. The  switching time is t2 = 9.375 h and the minimum amount of scale is 0.541 kg /m 2. 

Thus,  the regime for heating a metal to a prescribed temperature that provides the minimum amount of 

scale is characterized by two time intervals where the fuel rate is respectively minimum and maximum. 

A P P E N D I X  

where 

We write system (1) in matrix form and find its solution. We have 

T = A T + Q ,  

( - A 2 - A 3 Tlaea t (t) A = 
7" (t) ' T = 

The  determinant  of the characteristic matrix is equal to 

~[ + A 2 + A 3 
12E - AI = 

A 3 
_ #  , (2 = 

- f f  
- -  A 3 = dt 2 

2 + f f  + (A2 + A3 + ff) 2 + A 2 f f "  

(8) 
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Since A 3 > A 2 (see (4)) the eigenvalues will be the real numbers and 

- ~ + A  2 + A 3 )  +V'(u  + A  2 + A 3 )  2 - 4 A 2 1 *  
2 1 =  2 

- (u + A 2 + Aa) - q (u  + A 2 + A3) z - 4A~u 
22 = 2 

It is obvious that 0 > 21 > 22. 

It is easy to obtain the corresponding eigenvectors of system (8): 

H 1 = 

21 + / t  

1 
, H 2  = 

22 + ~  

I 

Here 

Thus, we obtain the solution to system (8) on the segment [tc, t] [6 ]: 

T( t )  = e x p ( A ( t -  tc) ) T c +  
t 
f 
t c 

(exp (A ( t -  r)) Q) dr = 

= e x p ( A ( t - t c )  ) T c +  
t 
f (P exp (B (t - r)) P-1  O) dz'. 
t c 

Theat (tc) ) 
Tc = T (tc) ' P = (HI H2) = 

21 + ~  22 + B  

1 1 

, B =  
0 22 ' 

tc is an arbitrary time, 0 _< tc <- tk. 

Hence, we obtain 

+ 21) ~Theat (tc) -- Ot + 22) T (tc)) exp (21 (t  - tc) ) 
Theat (t) = (21 _ 22 )/-r 

Q~ + 22) (T (tc) ([z + 21) - ~Theat  (Q)) exp (2 2 ( t  - tc) ) 
+ ('~I - 22)/~ + 

t A 1 U  (exp (21 (t - r)) (u + 21) - exp (22 (t - T)) (u + 22) ) 
+ f  

t c 

+ 

d~ , (9) 

(/XTheat (tc) -- Q~ + ~'2) T (tc)) e x p  (21 (t  - to) ) 
T (t) = 2~ - 2 z 

( T  (tc) ~ + 21) - PTheat (tc)) exp (22 (t  -- to) ) + + 
21 -- 22  

t PA1U (exp (J' l  ( t  - -  2")) - -  exp (2 2 ( t  - z))) dr. 
+ f ~1-)]-2 t c 

+ 

( m )  
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From (10) it follows that the lower the fuel rate U(t), the lower the metal temperature T(t ) .  

By virtue of Corollary 1 obtained in [1 ] we have that the control Uw(t) that realizes the infinite optimum 

trajectory (IOT) is a step function. 
We will determine the IOT. For this purpose we estimate the derivative ot ~ the integrand of functional (6) 

F(T)  = a / T 2  e x p ( - f l / T ) .  We have 

 ex., 
and therefore F(T1) > F(T2) for T 1 >- T2 > TO, i.e., the lower the metal temperature, the smaller the value of the 

integrand. 

By Wheat(t) and W(t)  we denote the trajectory that is found as a result of integrating Eqs.(1) for U(t) = 

Uh with initial conditions (3). 

For any permissible process of problem (1)-(5) Theat(t) , T( t ) ,  U(t) it is proved that 

T( t )  >_ W ( t ) ,  t e  [0, t k ] ,  

and therefore F ( T ( t ) )  >_ F ( W ( t ) ) ,  t E [0, tk], 

t2 t2 
f F ( T ( t ) ) d t > _  f F ( W ( t ) ) d t ,  0 <_ t 1 <_ t 2<_ t k .  
tl tl 

So, we have proved that Wheat(l), W(t)  are the IOT, Uw(t) = Uh [1 ]. Problem (1) degenerates and tl = 0 [1 ]. We 

find the solution to the problem with a free left end of the trajectory riheat(t), ri(t) and the time t 2. 

For U(t) = Uh, tc = O, T(tc) = TO, Theat(tc) -- Theat0 we easily obtain from (10) that lira W(t)  = A 1 / A 2  Uh 
t --> oo 

< T k (see (4)), and consequently, there is an instant t2 < tk such that differential equations (1) with the boundary 

conditions T(t2) = W(t) ,  Theat(t2) = Wheat(t2), and T(tk) = Tk on the segment [t2, tk ] have a solution riheat(t), ri(t) 

such that for t 1 > t2 the analogous boundary problem has no for every permissible regime of variation of the fuel 

rate. 

The trajectory riheat(t), ri(t) can be obtained as a solution to the following problem: 

driheat dr i  
dt  - A1Uk - A2riheat - A3 (riheat -- riD), dt - / ~  (riheat -- r i ) ,  (1 1) 

r i  (t2) = W (t),  riheat (t2) = Wheat (t2)" r i  (tk) = T k ,  t2 < t < t k .  (12) 

We show that riheat(t), r i ( t ) ,  t2 <-- t <-- tk and t2 are the sought trajectory and time. Let Xheat(t), X( t )  be 

the optimum solution to the corresponding problem with a free left end of the trajectory on the segment [t2, tk]; 

then X( t z )  > ri(t2) since in the opposite case this contradicts the choice of the time t2. By virtue of the continuity 

of the functions X( t )  and ri(t) on the segment [t2, tk] and from (11) and (12) it follows that we find tl< tk: X(t 1) 

= r i ( t l ) .  It is obvious that X( t )  = r i ( t ) ,  tk >-- t >_ t 1 and X( t )  = r i ( t ) ,  t 1 > t >_ t2. Hence we have 

tk t k 

f ~ e x p ( - f l / r i ( t ) ) d t <  f ~ e x p ( - f l / X ( t ) ) d t ,  
t2 t 2 

i.e., Xheat(t) , X( t )  are not the optimum solution to the problem with a free left end of the trajectory on the segment 

[tz, tk ]. We have obtained a contradiction. Consequently, riheat(t) and ri(t) are the optimum solution to the problem 

with a free left end of the trajectory. 

Thus, the algorithm for solving problem (1)-(6) consists in determining the time t2 which is found as the 
root of the equations 
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Wheat (~) -- (/)heat (V) = 0,  W(z')  - ~ (r) = 0.  (13) 

To find the root, we use a numerical method. The main idea consists in finding the instant t2 and then the 

temperatures Wheat(t2) and W(t2). The algorithm can be as follows: 

Step 1. We prescribe the accuracy of calculations e and assume that a -- 0 and b = tk. 

Step 2. We calculate r = (a + b) /2 .  

Step 3. For U = Uh and tc = 0 we calculate Wheat(t) and W(t)  from (9) and (10). 

Step 4. For U = Uk and tc = r we calculate tg(tk) from (10). 

Step 5. If ~ ( t  k) > T k + e then a = r and we pass to step 2. 

Step 6. If ~ ( t k )  < Tk -- e then b = T and we pass to step 2. 

Step 7. If ftg(tk) - Tkl -< e we assume that t2 = r and we finish the calculations. 

N O T A T I O N  

t, time; Theat(t), T(t), temperatures of the heating medium and the metal respectively; U(t), fuel rate at 

the instant t; tk, time of termination of heating; ~t, A1, A2, A3, positive constants characterizing the dynamics of 

the heating process; Uh, Uk, minimum and maximum fuel rates, respectively; a, r ,  prescribed constants charac- 

terizing the dynamics of metal oxidation; tmin, minimum time of heating of the metal from the temperature TO to 

Tk; TO, Tk, initial and final metal temperature, respectively. 
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